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ALGEBRAIC PROPERTIES OF NUMBER 
THEORIES 

BY 

A. MACINTYRE AND H. SIMMONS 

ABSTRACT 

Among other things we prove the following. (A) A number theory is convex if 
and only if it is inductive. (B) No r.e. number theory has JEP. (C) No number 
theory has AP. We also give some information about the hard cores of number 
theories. 

0. Introduction 

This paper  is a continuation of [0]. In it we expand on the remarks  made in [0, 

Postscript],  answer  some of the questions of  [0, Section 4], and give some new 

results. 
tn Section 1 we give a lemma which is used several  t imes throughout  the 

paper,  and deduce f rom it the above  result (A). In Section 2 we give the details 

of the improvements  mentioned in [0, Postscript].  

In Section 3 we consider various aspects  of JEP  for  number  theories;  in 

particular we prove  (B). In Section 4 we turn to AP for number  theories,  and 

prove (C). In Section 5 we look at hard cores of number  theories and their 

connect ion with finite forcing generic structures.  

In the last section, Section 6, we make some further  remarks  and ask some 

questions.  

The results given here have been obtained by one or other of  us since the 

time of writing [0]. At that time we had seen only a summary  of [3], although 

later we saw the full version. A lot of what follows owes a great deal to [3]. It 

should be noted, however ,  that a lmost  all the results of  [3] are proved  for  full 

number  theory N only. Here  we are concerned with all number  theories. 

We use the same notation and terminology of [0], in particular we use the 

notations ~, ~r, ~r ,  Ae(T), M(T),  B, P, N, ~J~, =l,.,, V, , ,  and the terminology 

" submode l" ,  "number  s t ructure" ,  "number  theory" .  Any new notation or 

terminology is indicated in the text.  
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We use the references of [0] together with some new items (i.e. [19]-[24]), 

and we have taken this opportunity to give new information for some items of 

[0] (i.e. [3], [7], [13], [16], [17], [18]). We also take this opportunity to give the 

following corrections to [0]. 

(1) p. 

(2) p. 

(3) p. 

(4) p. 
(5) p. 

(6) p. 

328, I. 18:--In the definition of K ( v , x ) ,  " v "  should be " ^ " .  

330, i. 13: . . . .  formula d~"~(v, w) . . . .  

333, i. l l :  . . . .  92E~ .  

334, I. 7 : - B o t h  ocurrences of "4~" should be " 0 " .  

336. I. 1: . . . .  cardinal r . . . .  

336, i. 11: . . . .  i (~T) . . . .  . 

I. Intersection of number structures 

Because peano number theory P has induction axioms it also has (internally) 

definable skolem functions. If we use these skolem functions with a little care 

we obtain the following lemma. 

LEMMA i.1. For each n ~ to and each 3,  ,-formula O(v, w) there is an 

3,  ~,-formula t~(v, w) such that the sentences 

U) (Vw)[(3v)O(v ,w)-~(3v) l~(v ,w)] ,  

(ii) (V w , v , v ' ) [ t ~ ( v , w ) ^ l ~ ( v ' , w ) ~ v  = v'], 

(iii) (Vw, v)[p.(v, w)---~O(v, w)], 

are provable in P. 

Notice that here v, w need not be single variables but can be finite strings of 

variables. Notice also that for n = 0 the three sentences (i, ii, iii) are V2, V, and 

u hence are provable in B. 

Let  us use this lemma to prove the following theorem. 

THEOREU 1.2. Let {93~: i E I} be a family o[ number structures and ~I a 

number structure such that for each i ~ 1, ~a, C ?l. Let 

= t 3 { ~ , : i U I } .  

Let oh(w,, ..., w,) be an 3,-formula and let c,, ..., cs be elements of (s such that 

for each i E1, Bil=4,(c,,"" . ,c,) .  Then ( ~ l = ~ c , , . . . , c , ) .  

PROOF. Let 

~(w, ,  . . . ,  w,) = (3v, ,  ..., v,)O(v,, ..., v,, w,, ..., w,), 

where 0 is a quantifier-free formula, and let ~(v , , . . . , v , ,w~ , . . . ,w , )  be the 

corresponding 31-formula given by Lemma 1.1. 
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Let i E L Part (i) of the lemma shows that there are elements b , , . . . ,  b, of ~ 

such that 

k~, ]=/.t (b,, . . . ,b , ,c , ,  " ' , c , )  

and so (since tz is q,) 

'.~11=/.t (b,, " ' .  b,, c~, .... c,). 

Part (ii) of the lemma now shows that the b~, .... b, are independent of i and so 

are elements of (L Part (iii) of the lemma gives 

?I r= O(b, . . . . ,  b,. c,, ..., c~) 

so that (since 0 is quantifier-free) 

~[= 0 (b , . . . . , b , . c , . . . . , c , ) ,  

which gives the required result. 

CORO,.LARV 1.3. Let ~1 be a number structure and {~i: i E l} a family of 

structures such that for each i E I ~ < ,~ Let 

Then (S < ,  ?I. 

Remember that a theory T is convex if for each model ?1 of T and family 

{ ~ : i  E I} of substructures of ?l. each of which is also a model of T, the 
intersection 

(S= fq{~,:  i E l }  

is again a model of T (provided the intersection is non-empty). There are 

syntactical characterizations of convex theories, in particular each convex 

theory is V2-axiomatizable. In general the converse of this is false, but for 
number theories it is true. 

THEOREM 1.4. A number theory is convex if and only if it is V2- 
axiomatizable. 

PROOF. Let T be any number theory. Let { ~  : i E I} be a family of models 

of T and let Pl be a model of T such that for each i E L ~,  c_ Pl. Let 

(S= n{~,: i E I } .  

We show that (SI=TN V.,. 
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Consider any tr E T fl V_. and let o" = (u  .... w,)g~(w,, . . . ,  w, ), where ~b is an 

=l,-formula. Consider any elements c, , .  �9  c, of (~. For each i • L ~ [ = tr, so 

that ~ [=~ (cj, �9 �9  c,). Theorem 1.2 now gives (S[=~b (c,, �9 �9  cs), so that (since 

c , . . . ,  c5 are arbitrary elements of (S) fS[=tr. 

2. Definable standard parts 

The central result of [0] is the existence of a certain formula I which defines 

in each number structure ~ E ~ the standard part co of ?(. This formula I is 33 

and is constructed using a certain creative set. In [3, Theorem i.32] Hirschfeld 

proves a similar result for number structures 9..1 E ~N. Starting from any simple 

set Hirschfeld obtains an =l,-definition of co. In this section we show that by 

using a particular simple set Hirschfeld 's  method works for all number  

structures ~1 ~ ~. This leads to the improvements  mentioned in the postscript 

of [0]. 

Our proof is simply a careful analysis of Hirschfeld's  proof. Hirschfeld uses 

the truth of certain number theoretic sentences. Here we must check that, as 

well as being true. these sentences are also provable in B. 

As always we need a formal version of the enumeration theorem. 

(2.1) There is a certain 3,- formula d(v,  w) such that for each 3,- formula 

O(v) there is some t E w  such that B[=(Vv)[O(v)*-~d(v,t)].  

Note that here v, w are single variables, not finite sequences of variables. 

We need a description of a certain simple set. The simple set we use is the 

original one as constructed by Post, so we formalize [14, p. 106, Theorem II]. 

Let O(v,w)  be the 3~-formula d ( v , w ) ^  2w < v, and let ~ ( v , w )  be the 

=l~-formula corresponding to 0 given by Lemma 1.1. Let a , /3.-y be three 

sentences displayed and (i, ii, iii) of Lemma I.I. Since each of a,/3,  3, is an 

V.~-sentence, we have the following. 

(2.2) Each o f  the three sentences a. ft. ~/ is provable in B. 

Now let S ( v )  be the =l,-formula (:lw)ts(v, w), so S ( v )  describes the original 

simple set of Post. Notice that the simplicity of S is actually provable. 

LEMMA 2.1. The sentence 

(Vw )[(Vv )[d(v, w )-->--~S(v )]-->(Vv )[d(v, w )--> v <- 2w]] 

is provable in B. 
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PROOF. We demonstrate  the contraposit ive sentence. Using first a and then 

y we see that the implications 

(3v)[d(v,  w) ^ 2w < v]--~(3v)l~(v, w) 

---,(3v)[tL(v, w) ^ d(v, w)] 

--*(3v )[S(v ) A d(v, w)] 

hold in B, as required. 

Lemma 2.1 gives us the following crucial theorem (c.f. [3, Lemma 1.31]). 

THEOREM 2.2. For each structure ?l E ~ and element a of 71, if ?l [=---TS(a) 

then a E to (i.e. a is a standard element of  ?l). 

PROOF. Suppose ?l[[=--~S(a) for such a structure ~l and element a. Since 

- - , S (v )  E V~, [15, Theorem 2.1] gives us some O(v)E 3, such that 

?(l=O(a), ? t [ = ( V v ) [ O ( v ) ~ S ( v ) ] .  

Now (2.1) shows that we may assume that O(v) = d(v, t), for some t ~ to, hence 

using Lemma 2.1 we have 

?ll=d(a,t) ,  ?ll=(Vv)[d(v,t)--~v =<2t]. 

Thus a _-< 2t and so a E to, as required. 

Let  I (x)  be the ::l~-formula 

(3v)[x =<v _-<2x ^ ---aS(v)]. 

Theorem 2.2 shows that for each 21 E ~, I'1C_ to. To show the converse 

inclusion we use the following. 

LEMMA 2.3. (i) For each n ~ to, B F I(n) .  

(ii) P F- ( V x ) I ( x ) .  

PROOF. (i) Inside B we have 

---~I(n)- .A{S(n +i ) :  0 < i  _-<n) 

~ ( 3 W o , . . . , w , ) A { ~ ( n  + i, wi): O<=i<=n} 

~ ( : : l w 0 , . . . , w , ) ^ { w ~  < n A t~(n + i ,w ~) :0 - -  < i_--< n}, 
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where the last implication holds since y E B. The pigeon-hole principle (in the 
real world) now gives (in B) 

-7I(n)--+(3w, v,, vD[v, ~ v ,A Iz(v,, w) A p.(v_,, w)], 

so the required result follows using/3. 

(ii) This follows by formalizing the proof of (i) inside P. Notice that this 

requires a formal version of the pigeon-hole principle. 
We have now improved [0, Theorem 2.1] to the following. 

THEOREM 2.4. There is a certain 3,.-formula I containing lust one free 

variable such for each ~1 E ~, I "~ = to. 

We will now improve [0, Theorem 2.5], i.e. we will prove the following. 

THEOREM 2.5. For each n ~ co there is an V~+3-sentence p{n} such that 

p{'> E P and for each V,+2-axiomatizable theory T_~ B, p{'} ~ T. 

We have already proved this for the case n = 0, we simply put p~}= Olx)I(x) .  

In [0] we explained how to obtain the general version of the theorem 

from this particular case, i.e. we simply relativize all of the preceding work. 

However, this explanation is misleading since such a simple-minded process 

gives us the weaker version of Theorem 2.5 obtained by replacing "B" by 

" P N  V~,:". To obtain Theorem 2.5 by relativization we must note where (2.1) 

and (2.2) were used in the preceding work, and find suitable generalized 

versions of them which are weaker than the simple-minded relativized ver- 
sions. 

Let n be some fixed natural number. 

Making use of recursive pairing functions of B, we have the following 
analogue of (2. l). 

(2.3) There is a certain 3. , , - formula d{~'(v,w) such that for each 3.+,- 

formula O(v) there is some t E to such that BF-(Vv)[O(v)(-->d'"'(v.t)]. 

Let O'~}(v. w) be the 3~+1- formula d{~}(v. W)A2W < v. and let p.'"'(v, w) be the 

3~.~-formula corresponding to 0'"' given by Lemma 1.1. Let a'"',/3{~}, 3/n' be 

the three corresponding sentences of Lemma I.I. It turns out that we do not 

need an analogue of (2.2). All we need to know is the following. 

(2.4) Each of a {"}, /3{">, 7{"' is an V....-sentence and P}-a<~}A/3{~^y {"~. 

Let S{"}(v) be the 3.§ (3w)~{"'(v, w) and let l~"}(v) be the 3..z- 
formula 

(3v}[x -< v ~ 2x A 7S{"'(v)].  
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Notice that the initial quantifier of I~'~(x) is bounded, so that we have the 
following. 

(2.5) There is an V, . , - formula J("'(x) such that the V..3 sentence 

r/'"' = (Vx)[l'"'(x)~-~J'"'(x)] 

is provable in P. 

For each theory T let g'~r "~ be the class of structures 9.1 such that there is some 
~/3 I=T with ~1 < . ~ ,  and for all ~ [=T,  

PI<~ ~:::> Pt < ~ 

In particular ~ o , =  ~ .  

Working through Lemma 2.1, Theorem 2.2, Lemma 2.3 and making careful 

notes of how the sentences a,/3, y are used we obtain the following analogue of 
Theorem 2.4. 

LEMMA 2.6. For each theory 

~U~T'),  I("~ ~ = to. 

T_D B U {a"',/3("', y ("' } and each 

Now let p'"'  be a'"'A /3~ SO that p~" 'EV, . , .  

PROOF OF THEOREM 2.5. Using the analogue of Lemma 2.3 (ii) and (2.4), 

(2.5), we see that Pkp ("'. 

Now consider any V,_2-axiomatizable theory T_DB, and suppose that 

T~-p('~. Let 9 ,  be any uncountable member of g'~T "~ having carrier set A. 
Since T is V,.2-axiomatizable, we have 9lJ=T, so that r ~"'. But then 

Lemma 2.6 with the sentence 77 c"' gives 

to = I'"'~ = J'""~ = A. 

This is imposible (since A is uncountable) and so the theorem is proved. 

3. The joint embedding property 

A theory T is said to have JEP if for each two models .~l, ~ of T there is a 

third model (S of T together with embeddirrgs ~! ~ if, '.~--* ($. In particular any 

complete theory has JEP. 

The following characterization is well known. 

LEMMA 3.1. A theory T has JEP if and only if for each pair ~, fl o f  

V,-sentences, if TF-a v/3 then TF-a or TF-fl. 

Rabin has shown that no r.e. extension of P has JEP. Independently the first 

author noted that this result follows from the existence of a certain pair of 
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recursively inseparable sets. This argument is incorporated in the proof of 

Theorem 3.4 (below). For some of the results of this and the next section we 

require something stronger than the existence of recursively inseparable sets. 

namely a version of Friedberg's splitting theorem. Friedberg's theorem can be 

stated as follows. 

THEOREU 3.2. For each r.e. set E there are r.e. sets L, R such that the 

following hold. 

(i) E = L U R. 

(ii) L A R = ~ .  

(iii) For each pair of  r.e. sets X,  Y such that 

L A X = R N Y = ~ Y  

there are r. e. sets X ' ,  Y '  such that 

X ' - E = X - E ,  Y ' - E =  Y - E  

and both X '  n E, Y '  n E are finite. 

A statement of Friedberg's theorem in this form can be found in [20, 

Theorem 4]. Notice, however, that here we are not concerned with the 

incomparability of L, R and so we do not have a clause corresponding to 4.3 of 
[20, Theorem 4]. 

We will require the followihg consequence of (i, ii, iii) of Theorem 3.2. 

(3.1) For each pair o f  r.e. sets X,  Y, 

L n x = f 2 Y ~ X - R i s r . e .  

R N Y = ~ Y ~  Y - L i s r . e .  

As can be expected there is a certain amount of effectiveness and uniformity 

in the proof of Theorem 3.2. Analysing this proof we find that the following 

theorem holds. (It is not a good idea to analyse the proof given in [20] since the 

clause (4.3) intoduces a lot of unnecessary complications.) 

THEOREM 3.3. For each 3,-[ormula E(v), there are 3~-[ormulas L(v), R ( v )  

such that 

(i) B k ( V v ) [ E ( v ) ~ , L ( v ) v R ( v ) ] ,  

(ii) B 13 (Vv)[- - -aL(v)v-~R(v)] ,  

(iii) condition (3.1) holds (where L, R are the r.e. sets defined by L(v), R ( v ) ). 

Notice that we do not state the obvious effective version of (3.1). We will say 

more about this in the next section. 
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Almost all of the results concerning number theories are based on diagonal 

arguments. Sometimes this diagonalization is done within the theory itself and 

sometimes it is done outside the theory (i.e. within the external recursive 

function theory). Sometimes an internal diagonal argument can be replaced by 

an external diagonal argument. This is always desirable since external argu- 

ments are easier to handle. 

A case in point is the result [231, Lemma 3.3] of Don Jensen, which he 

proved using an internal diagonalization argument. We derive a more general 

version of [21, Lemma 3.3] from Theorem 3.3. 

THEOREM 3.4. L e t 3 " b e a n y t r u e  V,--sentence (i.e. ~[=y) .  Let {T,: i E I } b e  

a set of  number theories such that {Ti N V,: i E I} is uniformly r.e. Then there 

are true V,-sentences a, [3 such that the following hold. 

(i) BFctA[3--~T. 

(ii) Bka v[3. 

(iii) For each i E I neither Ti k a nor  T, F [3. 

PROOF. Let O(v) be any ::lrformula which defines a non-recursive r.e. set E. 

We easily check that the formula E ( v ) = - - 3 "  v0(v)  also defines E. Let L(v) ,  

R ( v )  be the formulas given by Theorem 3.3, and let L, R be the corresponding 

r.e. sets. For each n E to we have 

B F--1L (n )A---aR (n )--~ y 

Bk - - -aL(n )v - -qR(n ) .  

Consider the two sets X, Y defined by 

n ~ X r162 There is some i E I with Ti k---qL(n) 

n @ Y r162 There is some i G I with T~ t----qR(n). 

These two sets are r.e. and clearly L n X = R n Y = ~ .  Also Theorem 3.3 (ii) 

shows that L _C I", R C X, so that 

X U  Y - E  = ( X - R ) U ( Y - L ) .  

This, with (3.1), shows that X U  Y - E  is r.e. 

Now E is not recursive and E C X U Y, so that X U Y ~  to. We can thus take 

any n f f : X U  Y and put a = ---aL(n), [3 = - 1 R ( n ) .  

Notice that the set E used in the proof  is arbitrary and independent  of the 

sentence y, but this does not mean the sets L, R are independent of 3'. 

Remembering Lemma 3.1 we immediately obtain the following corollary. 
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COROLLARY 3.5. Each number theory T with T n V, r.e. does not have JEP. 

Notice that there are complete number theories of complexity A~ 

Corollary 3.5 gives us some information about the number of /-generic 

structures for number theories. The following theorem verifies and extends the 

conjecture [0, w 8 (vi)]. Details can be found in [24]. 

THEOREM 3.6. For each number theory T, i[ T n V, is r.e. then j(.~T) = 2 '~. 

We now consider just how badly JEP can fail for a number theory. To do this 

we make use of a weak version of the elementary equivalence relation. 

For each two structures Pl, ~ we write 92 ~ (:1,) ~ if each qrsentence which 

holds in 92 also holds in ~.  The following lemma is well known. 

LEMMA 3.7. For each two structures 92, ~ the following are equivalent. 

(i) 92 ~ (:1,) ~.  

(ii) There is a structure ~ together with an embedding 92--->(S and an 

elementary embedding ~ ~ (S. 

For each number theory T let ~r be the class ~(T) n ~t(B), and let )(T) be 

the class of number structures 9I such that for each ~I=T there is some ~I=T 
together with embeddings PI~(S, ~ S .  

THEOREM 3.8. For each number theory T the following hold. 
(i) 5e'(N) C_~(T)_C.SP'(T). 

(ii) T has JEP if and only if J(T)  ~ ~'(T). 

PROOF. Suppose that 92 E 5e'(N), so that ~[ ~, (3,) g~. and consider any 

I=T. Since ~ contains an isomorphic copy of ~ (i.e. the standard part of ~), 

we have ,~R ~ (3, )~,  so that 92 ~ ( 3 0 ~ .  Thus Lemma 3.7 shows that 
92 E p (T). 

This proves the first inclusion of (i). The second inclusion and (ii) are trivial. 

This theorem shows that ~(T) is a measure of the joint embedding properties of 

T. We show that on this scale r.e. number theories fail to have JEP in the worst 
possible way. 

THEOREM 3.9. For each number theory T, if T A VI is r.e. then ~ ( F ) =  
Se'(N). 

PROOF. Let T be a number theory with TAV, r.e. and suppose fSE~(T). 

Let y be any true V,-sentence. We will show that ~l = 3', so that 92 ~, (3,)9~ 
and hence 92 ~ 6e'(N). 
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By Theorem 3.4 there are (true) V,-sentences a, /3 such that 

(i) BFot^/3--~ T, 

(ii) B F a v/3, 

(iii) T) e a and TJ /3 .  

Let 9l, ~ be models of T such that 911=--la and ~ 1=-7/3.(These exist by (iii).) 

Since fS l iC(T)  there are models 91', ~ '  of T such that 9l' is a common 

extension of ~ ,  fS and ~ '  is a common extension of ~ ,  fS. Since -7  a, --1/3 E=lt, 

we have 9[' [=---la, ~ '  1=---3/3, and so (ii) gives 9[' [=/3, ~ '  [=a. But a , /3  E V,, so 

that @]=ct ̂ /3. Now (by definition of a~(T)) ~I=B, and so (i) gives ~I=y, as 
required. 

Finally, in this section, we give a necessary and sufficient condition for the 

joint embeddabili ty of two number structures, We use the following observa- 
tion. 

LEMMA 3.10. Let 9[, ~ ,  fS be structures such that 91C ~3 C ~, 91[=B, @I=B, 

and 91 is colinal in fO. Then 91 < ,  ~ .  

PROOF. Let  ~b(v, w) be any quantifier free formula (where v, w are finite 

sequences of variables) and a any sequence of elements of 91 such that 

91l=(Vv)#,(v,a). Let u be a new variable and consider the formula (Vv _-< 

u)ck(v ,w)  (where v _-<u has the obvious meaning). Let O(u,w)  be any 
=l,-formula such that 

B ~-(Vv _-< u)ck(v, w)~--~O(u, w). 

Consider any element b of ~ .  Since 91 is cofinal in ~ there is some a '  of 9l 

such that b < a ' .  No w 9[l=(Vv <=a')~b(v,a), so that (by the above remarks) 

fSl=(Vv <=a')cb(v,a). In particular fS[=4~(b,a), so that ~l=~b(b,a) .  

This shows ~[=(Vv)4~(v,a),  as required. 

The next theorem should be compared with [21, Theorem 6(i)]. 

THEOREM 3.11. For each two number structures 9t,, ?[2 the [ollowing are 
equivalent. 

(i) 91,, 912 have a common number structure extension. 
(ii) 9l, ~ (3,)9112 or ~ 2 ~  (:1,)9l,. 

PROOF. (i) => (ii). Suppose we have some ff [=B together with embeddings 
9L ~ ~. Let ~ be the initial section of ~ generated by the image of 9L. Thus we 

have an embedding 9L ~ which (by Lemma 3.10) is a i-embedding. 

Now 6 is an end extension of both ~, ,  ~.~ so that either ~ ,  C ~2 or ~2 _C ~, .  

This gives 9l, ~) (=1,)912 or 912 ~ (=l,)?l,, respectively. 

(ii) ~ (i). This implication follows by Lemma 3.7. 



I8 A. MACINTYRE AND H. SIMMONS lsraelJ. Math., 

4. The amalgamation property 

A submodel .~1 of a theory T is an amalgamation base for T if for each pair of 

models ~, ,  ~ of T and embeddings ? l - ~ q ,  there is a model ($ of T and 

embeddings ~ (S such that the diagram 

commutes. Let ~(T)  be the class of amalgamation bases for T. (We know that 

~(T)  is exactly the class of pregeneric structures for T, but we make no use of 
this here.) 

A theory T has AP if ~ (T)  _C ~(T).  Notice also that a number theory T has 
JEP if and only if ~ ~ ~(T).  

The following theorem is extracted from [ 19]. It characterizes the class J ( T )  

and should be compared with Lemma 3.1 and the characterizations of ~r in [15, 

Theorem 2.1]. Remember that for each formula ~b, fv(~) is the set of free 
variables of 6. 

THEOREM 4.1. For each theory T and structure .91 • 5r the following are 
equivalent. 

(i) ~1 ~,~(T).  

(ii) For each ~.l-assignment x and pair ck~, cb,_ of  V,-formulas such that 
TFtk, v~b2, there are 3~-formulas O,, 02 such that fv(O0C_fv(~b,), fv(Oz)C_ 
fv(~2), ~i t=O, v O2[x] and TF 0,---~k,, TF02-*~2. 

Trivially, for each theory T we have ~(T)I=T n V~, but we do not necessarily 

have ~(T)I=T n V2. In particular for number theories T we may not have 

~(T)I=B. Thus, for each number theory T we put sC'(T)= ~t(T)n J/(B). 

We easily check that ~'T__C ~t'(T), and these classes can be distinct. For 

instance, let T be a complete number theory such that there is some true 

u y with -nY E T. Since T is complete, it has JEP and so ~ ~ ~ '(T).  

But ~t' ~ ~v for otherwise we have, for each ~ [='T; ~J~ <1~ and so 3' E T. 

On first aim of this section is to extend Theorem 2.4, which is a result 

concerning the class ~r, to cover the class ~ '(T).  We do this by duaiizing the 
methods of Section 2. 
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Theorem 2.4 is based on a certain simple set. The dual analogues of simple 

sets are pairs of Strongly inseparable sets, so we require such a pair where the 

defining properties of the pair are provable in B. Analysing the construction of 

[14, Ex. 8--39], we have the following lemma, which should be compared 

with Lemma 2.1. 

LEMMA 4.2. There is a certain L(v) ,  R ( v )  of 3,-formulas such that 

B F(Vv )[---1 L (v)v - T R ( v  )] 

and both the sentences 

(Vw )[(Vv )[d( v, w )~---1L ( v )]---*(Vv )[d( v, w )---* v < 3w v R (v )]] 

(Vw)[(Vv)[d(v, w)-*---3R(v)]---*(Vv)[d(v, w ) - . v  <= 3w vL(v)] ]  

are also provable in B. 

The following analogue of Theorem 2.2 is the crucial theorem. 

THEOREM 4.3. For each number theory T, structure ?1 ~ ,~4'(T), and element 

a of 91. if 911=----l[L(a)vR(a)] then a Eto. 

PROOF. Let T, 91, a be as in the statement.  

Since (by Lemma 4.2) TI- Olv)[---~L(v) v ---~ r(v)], Theorem 4.1 gives us some 

l, r E to such that 

91 [=d(a, l )vd(a,r)  
and 

T~-(Vv )[d( v. I )--->----1L (v )] 

TF-(Vv )[d(v, r )--*----lR (v ) ]. 

These two sentences are V, and so hold in 91, hence Lemma 4.2 gives 

91 [=(Vv )[d(v, l)---~ v <= 31 vR(v)]  

911=(Vv)[d(v. r ) ~ v  <= 3rvL(v ) ]  

so that 

91[=a<-_3tvL(a)vR a),  

where t = max{ I , r }Ew.  But 91[=---1L(a)^---1R(a),and so a =<3t, which gives 

the required result, a ~ to. 

Now let l ( x )  be the ::l,-formula 

(::]v)[x <- v <_ 3x ^--- l IL(v)vR(v)]] ,  
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so this I(x)  is the analogue of the I(x)  used in Section 2. The formulas L(v),  

R(v)  are chosen so that the following holds. 

LEMMA 4.4. (i) For each n ~ to, Bkl(n) .  

(ii) Pk (Vx)l(x).  

This lemma together with Theorem 4.3 gives us the following analogue of 

Theorem 2.4. 

THEOREM 4.5. There is a certain 32-formula I containing just one free 

variable such that for each number theory T and each ~ E ~t'fF), I "  = to. 

The following surprising result should be compared with Corollary 3.5. Since 

any model complete theory has AP, this result strengthens [0, Theorem 3.1]. It 

is proved in exactly the same way as [0, Theorem 3.1]. 

COROLLARY 4.6. NO number theory has AP. 

COROLLARY 4.7. For each number theory T the only possible member of 

~ ' (T)A~t (P  nv3) is (up to isomorphism) ~. 

PROOF. Since (Vx)I(x) E P n V~. 

Although in his thesis [3] Hirschfeld is concerned almost entirely with full 

number theory N, in fact most of his results hold for all number theories. (We 

can see this simply by verifying the provability of certain true sentences.) 

However, some of his results cannot be generalized by such a straightforward 
procedure (if at aiD. We will now give an example of this. 

Consider [3, Theorem 2.4], this says that ~v = ~t(N) n JR(N n V2). Now for 

each number theory T we easily see that 

STC_ M(T) A ~ ( T  N V2) _C M'(T) 

and the example given earlier in this section, which shows that for some 

T $~-~ M'(T), in fact shows that ST~ ~t(T)n AI(T N V2) is possible. Thus the 

obvious generalization of Hirschfeld's theorem is false. 

Let us take a closer look at Hirschfeld's proof. To do this we must go back to 

the effective version of the splitting theorem, i.e. Theorem 3.3. 

Part (iii) of this theorem can be rephrased as follows (where M = N). 

(4.1) For each pair X(v) ,  Y(v)  of 3,-formulas defining r.e. sets X, Y such 

that L n X = R n Y = ;~5, there are x, y E to such that 

Mk(Vv)[d(v,x),,--> X(v)^----1R(v)] 

MF ~r y)(-* Y(v) ^ --~L (v)]. 
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If we could replace 'M' in (4.1) by 'B', then we could get a completely effective 

version of the splitting theorem. We will show that this is not possible. 

It seems likely that there is no r.e. theory M satisfying (4.1). If such an r.e. M 

exists, then we have a recursive procedure which produces the indexes x ,y  

from the formula E(v) (of Theorem 3.3). Looking at the proof of Theorem 3.2 

we see that this is unikely. 

We are grateful to Mike Yates for these, and other, remarks concerning the 

splitting theorem. 

Let M be any V2-axiomatizable number theory which satisfies (4.1). Clearly 

we could put M = N n V2 but we would prefer, if possible, to use a much 

smaller theory. 

The following is a generalization of Hirschfeld's theorem. 

THEOREM 4.8. Foreach number theory T, M(T)AAt(M)C_%, and if MC_T 
then ~t(T) n ~t(M) = ~r .  

PROOF. The proofs of both statements are similar, so we will prove only the 

second one. 

Suppose M C_T. Since M is V2-axiomatizable we have ~rC_ ~ t (T)n  ~ ( M ) ,  

thus we must show the reverse inclusion. 

Let ,~1 E ~(T) ,  911=M. We will verify [15, Theorem 2.1 (iii)] and hence get 

E ~r. Since T has recursive pairing functions, it is sufficient to verify this 

condition for V~-formulas containing just one free variable. 

Let 9ll=~(a) for some V,-formula 4,(v) and element a of 9/. Let L(v),  R(v) 
be the :ll-formulas given by Theorem 3.3 applied to the formula E ( v ) =  

~ ( v ) .  
Since ~ E ~ ( T ) ,  Theorem 3.3 (ii) and Theorem 4.1 gives us =lrformulas 

X(v),  Y(v)  such that 

(4.2) 

and 

(4.3) 

91 [=X(a )v Y(a ) 

T k (Vv)[X(v ) ---*--7 L (v)] 

Tk(Vv )[ Y(v )---*---nR (v )]. 

We check that these give L N X = R n Y = ~ (where L , R , X ,  Y are the 

corresponding real life r.e. sets) so'that (4.1) gives us some x, y E ~o such that 

M I-(Vv )[d (v, x),-->X(v)^ ---a R (v)] 

(4.4) 
M k (Vv)[d(v, y) *-~ X(v)  A --1 L (v)]. 
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Now, from (4.2), we can assume that ?l[=X(a).  Also (since '?ll=~(a)) 

Theorem 3.3(i) gives us ?11=---~R (a), so that (4.4) gives 

'?II=0(a). 

where O(v)= d(v ,x ) .  We now use, for the first time, M C T  which, with (4.4), 

(4.3) and Theorem 3.3 (i), gives 

Tk(Vv)[0(v )---' ~(v)l .  

Thus we have verified that 9.1 E g'r. 

COROLLARY 4.9. M ~  B. 

PROOF. If M = B then, for each number theory T, 

~ ' (T )  = ~ ('I') n ~ ( M )  = tgr, 
which is false. 

5. Cores of number structures 

We say a structure ?! is rigidly contained in a structure ~ if there is exactly 

one embedding of ?l into ~:~, For instance, the standard number structure is 

rigidly contained in every number structure. A structure ~ is a rigid part of a 

theory T if 21 is rigidly contained in every model of T. 

These definitions immediately give us the following lemma. 

LEMMA 5.1. If ?1, ~ are models of a theory T and both are a rigid part of T 

then ?[ ~- ~ and this isomorphism is unique. 

Of course, in general a rigid part of a theory is not necessarily a model of the 
theory. 

Let ~[ C ,~(T). We say an element a of ?! is 3,-definable over T if there is an 
3f-formula O(v) such that 

?[]=0(a), T~-(3!v)O(v). 

A proof of the following can be obtained from [22, Theorem 2.1 and Corollary 
2.4]. 

THEOREM 5.2. For each structure ?l and theory T the [ollowing are 

equivalent. 

(i) ~?l is a rigid part of  T. 

(ii) ~21 is a model o[ each V~-sentence which is consistent with T, and each 

element of  ?[ is 3,-delinable over Y. 
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If a theory T has a maximal rigid part then we call this rigid part the hard core 

of T. For instance, ~ is the hard core of B. Notice that this is an example of a 

theory without JEP but having a hard core. This shows that the converse of the 

next theorem is false. This theorem follows easily from Theorem 5.2. 

THEOREM 5.3. Let T be a theory with JEP. Then T has a hard core. For 

each model 93 of T the set E(93) of  elements of  M which are :l~-definable over T 

form s the hard core of T. 

For each number structure 93 let 

K(9() = N {~: ~3 < ,  9l}. 

We call K(93) the core of 93. 

THEOREM 5.4. For each number structure 93, K(91) < ,9l and so K(93) is 

also a number structure. 

PROOF. By Corollary 1.3. 

COROLLARY 5.5. For each number structure 93, K2(93) = K(93). 

THEOREM 5.6. For each number structure 93 and element a of 93 the 

following are equivalent. 

(i) a is an element of  K(93). 

(ii) a is 3j-definable over Th (9.1). 

PROOF. Let E(93) be the substructure of elements of 93 which are 3,- 

definable over Th(93). First we show that E(93) < ,  91. 

Consider any 3~-formula ~b(w~, ..., ws) and elements a~, .--, as of E(93) such 

that 931=~b(a,...,as). Let 

(~(Wl, " ' ' ,  Ws) : (3Vl ,  " ' ' ,  Vr)0(Vl, " ' ' ,  Vr, Wl, " ' ' ,  Ws) , 

where 0 is quantifier-free, and let/.t (v~, .-., w,) be the corresponding 3,-formula 

given by L e m m a  1.1. 

For each 1 =< i < s let 0,(v)  be some =l,-formula such that 

931=0,(a,), 911=(3~ v)o,(v),  

and let 6(v,,  "", vr) be the 3,-formula 

(3w,, ..., w,)[O,(w,)^. . .^O~(w~)^g(v, ,  ..., Vr, W,, "", W~)]. 

We see that 93[=(3!v, , . . . ,v,)~b(v, , . . . ,v,)  so there are elements b, , . . . ,b ,  of 

E(93) with 931=q~(b,,...,b,). This gives 93[=tx(b, , . . . ,b , ,a, , . . . ,a ,)  and so 

93]=0(b,,...,br, a , , . . . ,a , ) .  
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But 0 is quantifier-free, hence E(P()l=O(b,,...,b,,a,,....a~), which gives 

E(P()l=qb(a,, ..., a,), as required. 

This shows that E(P()< ,P( so that K(9I)C_ E(g[). It remains to show that 

E(P[) C K(g(). 

Consider any element a of E(gI) and let O(v) be an 3,-formula such that 

9~p=0(a), 9(J=(3! v)O(v). 

Since K (g l )<  ,91 we have K(9l)l=(3!v)O(v), and so a is an element of K(gl), 

as required. 

This completes the proof. 

COROLLARY 5.7. For each number structure 91, K(Pl) is the hard core of 

Th(Pl). 

In the next corollary we write 91 --- ,~ to indicate 9( ~ (3,p~ and ~ ~ (3,)9(. 

COROLLARY 5.8. For each number structures 91, ~ ,  

9t =-, ~ r K (gt) - K (~). 

This isomorphism (when it exists) is unique. 

We have seen that standard part of certain number structures can be defined 

within the structure. We now see that the core of these structures can be 
defined. 

Let K(v )  be the 32-formula 

(3x)[I (x)^d(v ,x)^(Vv ' )[d(v ' ,x ) - - ->v '= v]] 

(where l (x )  is the formula of Theorem 4.5). Theorem 5.6 gives the following 
theorem. 

THEOREM 5.9. For each number theory T and structure 91 E ~ ' (T) ,  K "~ = 

K (~I). 

We now look at the f-companion of complete number theories. The 

following theorem is essentially due to Hirschfeld [3, Theorem 6.7]. It should 

be compared with [22, Theorem 2.5(f)]. 

THEOREM 5.10. For each number structure 91. 

Th(gI)t = Th( K (9()) 

and (up to isomorphism ) K(gd) is the unique member of  ~;r(where T = Th(~l)). 
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PROOF. Let ~ be any structure such that K(?[) C_ ~ and K(91) -= ~ .  Consider 

any formula ch(v, ," ' ,vr)  and elemements  a , , ' " .ar  of K(9[) such that 

K(?l)]=d~(a,, . '., a,). 

By Theorem 5.6 we have :l ,-formulas O,(v),...,O~(v) such that for each 

l<=i<=r 

K(?l)l=O,(ai). K(?l)l=(3!v)Oi(v). 
Hence we have 

K(?t)]=(Vv, , . . . ,vr)[^{O~(v~):  1 <=i <-r}---,cb(v,....,v,)]. 

Now A(Pt)_C~, K(?I) =- 23 and each 0~ is ::1,, so we can transfer  to ~ .  and so 

obtain 2~ 1=4,(a,, ..., at). 

This shows that K(?D < 2~. and so K(?I) is a completing model of Th(K(P[)). 

It follows that Th(K(?I))  is [ -complete ,  hence, since T h ( ? I ) A V , =  

Th(K(Pl)) n 'r Yh(K(?l)) is t he / - compan ion  of Th(Pl) and K(,01) U ~ r (where  

T = Yh(?[)). 

Now let ~ be any member of .~v (i.e. a completing model of Th(K(~) ) .  

Since K(~I)I=(Vv)K(v),  K(~I)---2~, and ~ E ~ .  we have 

~ = K "~' = K ( ~ )  ~ K"(PI) = K(?I). 

which shows the required uniqueness of ~[. 

COROLLARY 5. I 1. The theory F is a finite extension of  E, being axiomatized 

over E by (Vv )K(v ) .  

Finally, since every non-standard member  of ~' satisfies---,Olv)I(x), Corollary 

5.7 gives the following theorem. 

THEOREM 5.12. For each complete number theory T, either the hard core o[ 

T is ~)~ or the hard core is not a model of  PN V,. 

6. Further  remarks and comments 

It this last section we suggest one or two further lines of research. 

I. Much of the tedium of [0] and this paper arises from the need to verify 

provability in P. Is there any reasonable way out of this? Thus, is there any test 

which for some sentences or E N n V_, will show P~-tr? Clearly there is no such 

test which works for all or ~E N n V2. 

2. Describe the set of sentences or E P such that for each Vz-axiomatizable 

number theory T, or~ T. 

3. The method of proof of Theorem 3.4 is similar to that used in [23]. What 

is the relevance of Theorem 3.4 to the result of [231? 
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4. Find a number theory T such that the three classes 5e'(N), ~(T), b~'(T) 

are distinct. 

5. The equivalence relation -=, partitions the class .~(B) into several 

equivalence classes, which we call nodes. The relation @ (q,) induces a partial 

ordering on the set of nodes. Theorem 3.11 shows that this partial order is a 

tree. This tree was introduced in [21. Theorem 6] where further properties of it 

can be found. There are many unsolved problems concerning this tree, for 

instance see 121, Problem 7]. 

6. Theorem 4.5 apparently extends Theorem 2.4. Justify this by finding a 

number theory T and structure PI E .d'(T) such that ~1 Z ~. However see 8. 

7. Corollary 4.6 ought to have a more direct proof. What model theoretic 

properties of an V_,-axiomatizable theory B imply that no extension of B has 
AP? 

8. The situation concerning the theory M and Theorem 4.8 is unsatisfac- 

tory. Perhaps some insight can be gained by attempting to prove the following. 

(i) If M satisfies (4.1) then NNV2CM. 

(ii) For each number theory T. ,d'(T)C_ ~'. 

Notice that a proof of (ii) would show that most of Section 4 is pointless. 

9. Can Corollary 5.8 be improved to 

~1 ~ (30 r162 K(Pl) is embeddable in K(B) 

where, of course, ~( and '~ are number structures? [Yes, H.S.] 

10. Use Theorem 5.10 to give a description of ~r  for arbitrary number 
theories T. 
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